Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Are non‐native plants abundant because they are non‐native, and have advantages over native plants, or because they possess ‘fast’ resource strategies, and have advantages in disturbed environments? This question is central to invasion biology but remains unanswered.We quantified the relative importance of resource strategy and biogeographic origin in 69 441 plots across the conterminous United States containing 11 280 plant species.Non‐native species had faster economic traits than native species in most plant communities (77%, 86% and 82% of plots for leaf nitrogen concentration, specific leaf area, and leaf dry matter content). Non‐native species also had distinct patterns of abundance, but these were not explained by their fast traits. Compared with functionally similar native species, non‐native species were (1) more abundant in plains and deserts, indicating the importance of biogeographic origin, and less abundant in forested ecoregions, (2) were more abundant where co‐occurring species had fast traits, for example due to disturbance, and (3) showed weaker signals of local environmental filtering.These results clarify the nature of plant invasion: Although non‐native plants have consistently fast economic traits, other novel characteristics and processes likely explain their abundance and, therefore, impacts.more » « lessFree, publicly-accessible full text available June 24, 2026
-
ABSTRACT AimNon‐native plants have the potential to harm ecosystems. Harm is classically related to their distribution and abundance, but this geographical information is often unknown. Here, we assess geographical commonness as a potential indicator of invasive status for non‐native flora in the United States. Geographical commonness could inform invasion risk assessments across species and ecoregions. LocationConterminous United States. Time PeriodThrough 2022. Major Taxa StudiedPlants. MethodsWe compiled and standardised occurrence and abundance data from 14 spatial datasets and used this information to categorise non‐native species as uncommon or common based on three dimensions of commonness: area of occupancy, habitat breadth and local abundance. To assess consistency in existing categorizations, we compared commonness to invasive status in the United States. We identified species with higher‐than‐expected abundance relative to their occupancy, habitat breadth or residence time. We calculated non‐native plant richness within United States ecoregions and estimated unreported species based on rarefaction/extrapolation curves. ResultsThis comprehensive database identified 1874 non‐native plant species recorded in 4,844,963 locations. Of these, 1221 species were locally abundant (> 10% cover) in 797,759 unique locations. One thousand one hundred one non‐native species (59%) achieved at least one dimension of commonness, including 565 species that achieved all three. Species with longer residence times tended to meet more dimensions of commonness. We identified 132 species with higher‐than‐expected abundance. Ecoregions in the central United States have the largest estimated numbers of unreported, abundant non‐native plants. Main ConclusionsA high proportion of non‐native species have become common in the United States. However, existing categorizations of invasive species are not always consistent with species' abundance and distribution, even after considering residence time. Considering geographical commonness and higher‐than‐expected abundance revealed in this new dataset could support more consistent and proactive identification of invasive plants and lead to more efficient management practices.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.more » « less
-
Abstract. Climatic extreme events are expected to occur more frequently in the future, increasing the likelihood of unprecedented climate extremes (UCEs) or record-breaking events. UCEs, such as extreme heatwaves and droughts, substantially affect ecosystem stability and carbon cycling by increasing plant mortality and delaying ecosystem recovery. Quantitative knowledge of such effects is limited due to the paucity of experiments focusing on extreme climatic events beyond the range of historical experience. Here, we present a road map of how dynamic vegetation demographic models (VDMs) can be used to investigate hypotheses surrounding ecosystem responses to one type of UCE: unprecedented droughts. As a result of nonlinear ecosystem responses to UCEs that are qualitatively different from responses to milder extremes, we consider both biomass loss and recovery rates over time by reporting a time-integrated carbon loss as a result of UCE, relative to the absence of drought. Additionally, we explore how unprecedented droughts in combination with increasing atmospheric CO2 and/or temperature may affect ecosystem stability and carbon cycling. We explored these questions using simulations of pre-drought and post-drought conditions at well-studied forest sites using well-tested models (ED2 and LPJ-GUESS). The severity and patterns of biomass losses differed substantially between models. For example, biomass loss could be sensitive to either drought duration or drought intensity depending on the model approach. This is due to the models having different, but also plausible, representations of processes and interactions, highlighting the complicated variability of UCE impacts that still need to be narrowed down in models. Elevated atmospheric CO2 concentrations (eCO2) alone did not completely buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight the consequences of differences in process formulations and uncertainties in models, most notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes, in projecting potential ecosystem responses to UCEs. We provide a summary of the current state and role of many model processes that give way to different underlying hypotheses of plant responses to UCEs, reflecting knowledge gaps which in future studies could be tested with targeted field experiments and an iterative modeling–experimental conceptual framework.more » « less
-
Abstract Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2, warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible atdoi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis‐based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.more » « less
-
Abstract Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.more » « less
An official website of the United States government
